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We have recently demonstrated1 the power of using an
orchestrated array of polymer supported reagents2 and
sequestering agents3 to effect multistep organic synthesis in
both linear and convergent formats. These methods have been
used to prepare a number of heterocyclic systems,1a,b,e,f,k,l

including a small library of hydroxyamic acid derivatives1j

and some natural products.1h,i The reactions proceed in a very
clean and efficient fashion and require only the simple
operation of filtration or solvent exchange to obtain the
desired compounds. In many cases, we believe these methods
to be superior to the currently accepted ways to construct
chemical libraries on polymer beads, since the reaction
monitoring is easier, reaction optimization is usually faster,
and no residue of attachment to the beads remains in the
final product.

Some years ago we optimized a reaction, first reported
by Lee,4a on a polymer support for potential application in
combinatorial chemistry.5 This reaction involves the prepara-
tion of bicyclo[2.2.2]octane derivatives using a tandem
Michael addition6 of enolates from 2-cyclohexenones with
various substituted acrylates. In this way it was possible to
build up a rigid scaffold, from readily available substrates,
which could then be decorated further to give a large number
of compounds by suitable manipulation of the functional
groups. To achieve success in this program, nearly two years
of work was required to optimize fully all the steps of the
synthesis, using a Wang resin as a support material.

Here we show that a similar compound library can be
preparedin solutionbut by using polymer supported reagents
and sequestrants in a multistep fashion, in a fraction of the
development time compared to the previous route. Further-
more, much greater variation and diversity was possible
owing to the enhanced speed of many reactions. Scheme 1
outlines this solution-phase synthetic strategy. To avoid any
chromatographic purification or aqueous workup, the key
bicyclo[2.2.2]octanones6a,b-8a,bwere prepared following
a modification of the literature procedure.4 A 2-fold excess7

of the lithium enolate base, generated by treatment of the

commercially available hexenones1-3 with lithium diiso-
propylamide (LDA), was reacted withtert-butyl acrylate48

(R2 ) H) andtert-butyl crotonate58 (R2 ) Me) at-25 °Cin
THF and allowed to warm to room temperature. Subsequent
addition of polymer-supported quench reagent, the ion-
exchange resin Amberlyst 15 (A-15), afforded after filtration
and evaporation the pure octanones6a,b-7a,b in high yield,
but octanones8a and 8b were contaminated by unreacted
3-methyl-2-cyclohexen-1-one3 (step a). Not only does
Amberlyst 15 quench the reaction mixture but this resin also
removes the excess of 3-alkoxy-2-cyclohexen-1-ones1 and
2 by absorption onto the polymer.9 However, to isolate the
pure octanones8a and 8b, sequestering conditions were
developed involving nucleophilic addition of polymer sup-
ported thiophenol (PS-thiophenol)10 to the unreacted cyclo-
hexenone3 in the presence of diisopropylethylamine (DI-
PEA) as base (stepb). Ammonium salt neutralization with
polymer supported carbonate (MP-carbonate)11 and final
filtration and evaporation afforded the two octanones8a
and8b in good yield and purity as established by1H NMR,
LC-MS, and GC analysis. The two complementary routesa
and a+b, as expected4,5 and confirmed by NOE measure-
ments, gave the bicyclo[2.2.2]octanones6a,b-8a,b with
endoselectivity.12

Having successfully synthesized a range of bicyclo[2.2.2]-
octanone systems, we next studied their reductive amination13

to provide a further combinatorial change with a large scope
for molecular diversity although in this particular work only
two amines were investigated. Commercially available
1-naphthalenemethylamine9 and tetrahydrofurfurylamine10
were condensed with the six octanones6a,b-8a,b to yield
the 12 5-amino-bicyclo[2.2.2]octane derivatives11a-d,
12a-d, and 13a-d. The optimized reductive amination
protocol used an excess of amine to quantitatively preform
the imine which was reduced with the commercially available
polymer supported borohydride resin.14 Finally, a formyl
resin (aldehyde Wang resin15) was used to remove the excess
primary amine in the presence of the secondary amine
product. As expected, the major isomers formed in this
reaction were the amines resulting from hydride attack from
the lower face of the oxabicylic ring (exoattack), although
theexo/endoratio was amine-dependent.16 No attempts were
made to isolate and characterize individual diastereomers.
The selected six amines11a-13aand11d-13d were then
sulfonylated under classical conditions with commercially
available 4-fluoro and 3-(trifluoromethyl)benzenesulfonyl
chlorides14 and15 in dichloromethane and Et3N as base.
Reaction workup involved addition of aminomethylated
polystyrene17 (AM-resin) to remove the excess sulfonyl
chloride, followed by addition of the acidic resin Amberlyst
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15 to sequester any eventually unreacted starting amine. Final
ammonium salt neutralization with Amberlyst 26 (A-26; OH-

form),18 filtration, and evaporation afforded the sulfonamides

16a,b-21a,b in good yield and high purity. These com-
pounds were then converted into the corresponding free acids
22a,b-27a,b (Table 1) by cleavage of thetert-butyl group

Table 1. Summary of Polymer Supported Reactionsa

R1 R2 R3 R4 R5 yield (%) purity (%) ES-MS

6a OEt H 90 >95 291.23
6b OEt Me 85 >95 305.28
7a Oi-Bu H 88 >95 319.32
7b Oi-Bu Me 85 >95 333.24
8a Me H 80 95 256.35
8b Me Me 82 95 270.38

11a OEt H C10H7CH2 95 >95 410.52
11b OEt H C5H9O 96 90 354.37
11c OEt Me C10H7CH2 96 90 424.44
11d OEt Me C5H9O 95 95 368.15
12a Oi-Bu H C10H7CH2 98 >95 438.55
12b Oi-Bu H C5H9O 97 95 382.49
12c Oi-Bu Me C10H7CH2 88 90 452.52
12d Oi-Bu Me C5H9O 98 95 396.25
13a Me H C10H7CH2 94 >95 380.51
13b Me H C5H9O 78 93 324.12
13c Me Me C10H7CH2 81 90 394.47
13d Me Me C5H9O 98 95 338.18
16a OEt H C10H7CH2 3-CF3 75 95 618.68
16b OEt H C10H7CH2 4-F 74 92 568.37
17a Oi-Bu H C10H7CH2 3-CF3 78 94 646.63
17b Oi-Bu H C10H7CH2 4-F 80 93 596.44
18a Me H C10H7CH2 3-CF3 76 95 588.65
18b Me H C10H7CH2 4-F 73 91 538.42
19a OEt Me C5H9O 3-CF3 72 95 576.49
19b OEt Me C5H9O 4-F 71 95 526.11
20a Oi-Bu Me C5H9O 3-CF3 82 90 604.64
20b Oi-Bu Me C5H9O 4-F 80 93 554.11
21a Me Me C5H9O 3-CF3 89 94 546.61
21b Me Me C5H9O 4-F 80 95 496.16
22a OEt H C10H7CH2 3-CF3 95 92 562.24
22b OEt H C10H7CH2 4-F 98 95 512.34
23a Oi-Bu H C10H7CH2 3-CF3 98 95 590.39
23b Oi-Bu H C10H7CH2 4-F 95 95 540.72
24a Me H C10H7CH2 3-CF3 96 91 532.45
24b Me H C10H7CH2 4-F 98 95 482.67
25a OEt Me C5H9O 3-CF3 97 95 520.57
25b OEt Me C5H9O 4-F 95 94 470.11
26a Oi-Bu Me C5H9O 3-CF3 98 95 548.42
26b Oi-Bu Me C5H9O 4-F 97 93 498.11
27a Me Me C5H9O 3-CF3 98 91 490.65
27b Me Me C5H9O 4-F 95 92 440.16
32 OEt H C10H7CH2 3-CF3 Pr 96 95 603.43
33 OEt H C10H7CH2 3-CF3 Bn 90 95 651.71
34 OEt H C10H7CH2 3-CF3 CH(i-Pr)(CO2t-Bu) 85 95 717.70
35 Oi-Bu H C10H7CH2 3-CF3 Pr 96 95 631.48
36 Oi-Bu H C10H7CH2 3-CF3 CH(i-Pr)(CO2t-Bu) 86 93 745.78
37 Me H C10H7CH2 3-CF3 Pr 95 95 573.40
38 OEt Me C5H9O 3-CF3 Pr 85 94 561.44
39 OEt Me C5H9O 3-CF3 cyclohexyl 82 93 601.57
40 OEt Me C5H9O 3-CF3 Bn 92 95 609.65
41 OEt Me C5H9O 3-CF3 CH(i-Pr)(CO2t-Bu) 82 93 675.73
42 Oi-Bu Me C5H9O 3-CF3 Pr 91 91 589.42
43 Oi-Bu Me C5H9O 3-CF3 Bn 91 95 637.48
44 Oi-Bu Me C5H9O 3-CF3 CH(i-Pr)(CO2t-Bu) 85 92 703.74
45 Me Me C5H9O 3-CF3 cyclohexyl 90 93 571.41
46 Me Me C5H9O 3-CF3 Bn 88 95 579.59
47 Me Me C5H9O 3-CF3 CH(i-Pr)(CO2t-Bu) 83 92 645.72

a Yields are given for the reaction from the precursor compound. Purities were determined by1H NMR or LC-MS or GC analysis as
appropriate. Mass ions are generally [M+ H], [M + NH4], or [M + Na] and obtained in positive mode.
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with trifluoroacetic acid (TFA, Scheme 1).19 A further
functional group elaboration was introduced by coupling the
selected free acids22a-27awith a representative group of
four amines, i.e., propylamine28, cyclohexylamine29,
benzylamine30, andL-valine tert-butyl ester hydrochloride
31. Better results were obtained following a procedure
developed in our laboratory1j that involves an in situ
conversion of the acids to the acyl bromides with carbon
tetrabromide in the presence of polymer supported triph-
enylphosphine.20 The necessary basic media were guaranteed
by the excess of amine (propyl, cyclohexyl, andbenzylseries)
or by the addition of Et3N (Valine series).21 The reaction
mixture was worked up by addition of aminomethylated
polystyrene and Amberlyst 15 to remove any trace of
remaining free acid and excess amine. Final filtration through
a pad of silica and evaporation gave the amides32-47 in
high yield and purity.

In conclusion we have developed a clean five-step
preparation of bicyclo[2.2.2]octane derivatives without any
chromatographic purification step to demonstrate the versa-
tility of the orchestrated application of polymer supported
reagents and sequestration agents in synthetic sequences.
Each step produced five independent libraries, with the final

library of compounds possessing five sites of diversity. While
we have not used robotic systems to build a large number
of compounds in this study, we believe the route would be
entirely adaptable to these high throughput methods.
Yields and purities of all compounds prepared are presented
in Table 1.
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